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Outline of Talk 

• Introduction to fast ions and fast ion driven modes 

• Overview of the HAGIS code 

• Nonlinear modelling of fast ion driven instabilities 

– Growth and saturation 

– Multiple modes interacting  

– Pitchfork splitting 

– Frequency sweeping modes 

– Fishbones 

– Tornado modes 

• Summary 
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• The overall programmatic objective: 

− to demonstrate the scientific and technological feasibility 

of fusion energy for peaceful purposes 

ITER Mission 

• The principal goal: 

− to design, construct and operate a tokamak experiment 

at a scale which satisfies this objective 

• ITER is designed to confine a Deuterium-Tritium plasma 

in which -particle heating dominates all other forms of 

plasma heating: 

    a burning plasma experiment 
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Physics: 

• Produce a significant fusion power amplification factor (Q ≥ 10) in 
long-pulse operation (300 – 500 s) 

• Aim to achieve steady-state operation of a tokamak (Q ≥ 5, ≤ 3000 s) 

• Retain the possibility of exploring ‘controlled ignition’ (Q ≥ 30) 

ITER Mission 

Technology: 

• Demonstrate integrated operation of technologies for a fusion power 
plant 

• Test components required for a fusion power plant 

• Test concepts for a tritium breeding module 
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• Access to plasmas which are dominated by -particle heating will 

open up new areas of fusion physics research, in particular: 

− confinement of -particles in plasma 

− response of plasma to -heating 

− influence of -particles on stability 

 

Burning plasma physics in ITER 

• Experiments in existing tokamaks have already provided some 

positive evidence 

− ‘energetic particles’ (including -particles) are well confined in  the plasma 

− ‘energetic particle’ populations interact with the background plasma and 

transfer their energy as predicted by theory 

− but ‘energetic particles’ can drive instabilities (Alfvén eigenmodes) - for 

ITER parameters at Q=10, the impact is predicted to be tolerable 
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Parameter 
Inductive 
Operation 

Hybrid 
Operation 

Non-inductive 
Operation 

Plasma Current, Ip (MA) 15 13.8 9 

Safety Factor, q95 3.0 3.3 5.3 

Confinement Time, E (s) 3.4 2.7 3.1 

Fusion Power, Pfus (MW) 500 400 360 

Power Multiplication, Q 10 5.4 6 

Burn time (s) 300 – 500 1000 3000 

 

ITER Baseline Reference Scenarios 

• The set of DT reference scenarios in ITER is specified via illustrative cases 

in the Project Requirements    Design Basis scenarios 

 

 

 

 

 

 

 

 

In addition, a range of non-active (H, He) and D plasma scenarios must be supported for 

commissioning purposes to support rapid transition to DT operation 
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• As the alpha power rises in 

high-Q plasmas, the plasma 

will enter a novel regime 

− Plasma behaviour dominated 

by -particle heating 

  Burning plasma regime 

Alpha-particle heating at Q = 10 
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Sources of Energetic Particles 

• Nuclear fusion 

– Isotropic slowing-down distribution 

– For DT fusion, -particle birth energy of 3.5 MeV 

• Neutral beam injection (NBI) 

– Anisotropic slowing-down distribution 

– Well defined Eb 

• Radio Frequency (RF) 

– E.g. Ion Cyclotron (ICRH) 

– No well defined characteristic energy 

– Anisotropic 
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IC 

Ion Cyclotron 

40 – 55 MHz 

20MW* 

+20MW# 

Sawtooth control 

modulation < 1 kHz 

LH 

Lower Hybrid 

~5 GHz 

0MW* 

+40MW# 

Off-axis bulk current 

drive 

EC 

Electron Cyclotron 

170 GHz 

20MW* 

+20MW# 

NTM/sawtooth control 

modulation up to 5 kHz  

*Baseline Power  #Possible Upgrade 

NB 

Neutral Beam 

-1 MeV 

33MW* 

+16.5MW# 

Bulk current drive 

limited modulation 

ITER Heating and Current Drive Systems 
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Toroidal direction 

Ion gyro-motion 

Fast ion trajectory 

Poloidal 
direction 

Projection of poloidally 
trapped ion trajectory 

Fast Ion Orbits 

Various natural frequencies associated with particle motion 

ωφ 

ωθ 

ωci 
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Burning Plasmas 

• New physics element in burning plasmas: 

– Plasma is self-heated by fusion alpha particles 

vTi  <<  vA  <  vα  <<  vTe 

vTi = 0.9106 m/s 

vA = 8106 m/s 

vα = 12106 m/s 

vTe = 59106 m/s 

ITER 

parameters 

+ 

+ 

+ Deuterium 

+ Tritium 

Energy 

+ 
+ 

Helium 

Neutron 
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Alfvén waves and αs 

Alfvén wave is very weakly 
damped by background plasma 

α 

3.5 MeV 

e 

10 keV 

i 

10 keV 

Fusion products (αs) interact with 

Alfvén waves much better than 
thermal plasma 
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Loss of Fast Particles 

• Loss of bulk plasma heating 
– Clearly unacceptable for an efficient power plant 

• Damage to first wall 
– Can only tolerate losses of a few % in a reactor 
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Reasons for Loss 

• Imperfections in confining magnetic field 

– Ripple due to finite number of field 

coils, TBMs, ELM coils 

48 superconducting coils 

92 

18 

6 

6 

• Self-generated field imperfections 

– Collective instabilities 
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Wave Induced Losses in TFTR 

• Specially designed 

experiments 

– Low field, Bt = 1 T 

– Deuterium NBI, 

Eb(0D
2) = 100 keV 

– vb ~ vA 

• Modes observed 

for PNBI > 5 MW 

• Correlated with neutron reduction 

– Neutron yield dominated by beam-plasma reactions 

 Fast ion loss 

K.L. Wong et al., Phys. Rev. Lett. 66 (1991) 

High frequency 

mode activity, 

~100 kHz 
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Alfvén Waves 

• Analogous to waves on a string 

– vA = B/(0mini) 

–   

– Form continuum of waves in inhomogeneous plasma 

– Damped due to phase mixing with neighbouring waves 

   rvkr AA

22

||

22  

Frequency 
continuum 
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Alfvén Waves and Eigenmodes 

• Current carrying inhomogeneous cylinder: 

– Helical field 

– k|| = k||(r) 

– Continuum has extremum 

– Global Alfvén Eigenmode 

(GAE) 

K. Appert et al., Plasma Phys. 24 (1982), D. W. Ross et al., Phys. Fluids 25 (1982) 
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Alfvén Waves in Tori 

• Tokamak plasma: 

– Fourier decomposition: 

• A ~ exp[i(n - m - t)] 

–   

– Neighbouring poloidal harmonics 

couple due to toroidicity 

– Gaps in frequency continuum 

– Toroidal Alfvén Eigenmodes 

(TAE) exist in frequency gap 

• Weakly damped 

– fTAE ~ vA/(2qR) 

 cos1 0000 RrBRRBB 

C. Z. Cheng, Liu Chen and M. S. Chance, Ann. Phys. 161 (1985) 
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Alfvén Eigenmodes 

• Exist in frequency gaps 

• Comprise of two primary 

harmonics, m and m + L 

– Wave-particle resonance 

condition: 

 - n  + (m 1)  = 0 

 

 

– TAE: L = 1 

– EAE: L = 2 

– NAE: L = 3 

v|| =  L/(2  L) vA 

vA vA/2 
vA/3 3vA/5 Velocity 

D
is

tr
ib

u
ti
o
n
 

EAE 
TAE 

NAE TAE 

Radius 

Alfvén Continuum 

TAE 

EAE 

NAE 

m, m + 1 

m, m + 2 

m, m + 3 

F
re

q
u
e
n
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• TAE have constant amplitude and fine frequency splitting 

 Nonlinear effect 

#40332 

n=6 
n=5 

n=7 

n=11 

Time [s] 

F
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n
cy
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L
o
g
(

B
) 

TAE in JET driven by ICRH accelerated ions 

Toroidal Alfvén Eigenmodes 
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Radius 

Energy [MeV] 

Fast Particle Drive 

• Collective instabilities 

– Fast particle gradients act as source of free energy 

• Non-Maxwellian distribution 

–  ~  f /E + n f /P 

   ~  f /E - n f / 

– Negative radial gradient 

 Drive (n>0) 

– Negative energy gradient 

 Damping 
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HOW CAN WE MODEL NONLINEAR FAST 

ION DRIVEN INSTABILITIES IN FUSION 

PLASMAS? 
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The HAGIS Code 

S. D. Pinches et al., Comput. Phys. Commun. 111 (1998) 
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Equilibrium Representation 

• Straight field line (Boozer) coordinates 

General toroidal 

geometry 



Page 25 IDM UID: PVLZH2 © 2014, ITER Organization 

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014 

Evolution of Energetic Particles 

Exact particle Lagrangian, 

is gyro-averaged and written in the form, 

 

 

with 
 

leading to 4        equations 

Guiding centre 
trajectory 

Magnetic 
field line 

Particle trajectory 
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Equations of Motion 

Derived from total system Hamiltonian for each particle: 

RB White & MS Chance, Phys. Fluids 27 10 (1984) 
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Fast Particle Orbits 

• ICRH ions in JET deep shear 

reversal 

– On axis heating†: 

 = B0/E = 1 

– E = 500 keV 

• Produces predominately 

potato orbits 

• Particle trajectories verified 

through comparison with other 

codes and analytic solutions 

R [m] 

z
 [
m

] 

†J. Hedin, PhD Thesis 1999 
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Calculation of AE Eigenfunctions 

Wave Lagrangian: 

 

 

 

 

Expanding in perturbed field powers: 

•  L(0) describes the equilibrium and is solved by, for 

example, HELENA 

•  L(1) describes first order force balance 

•  L(2) describes fixed amplitude Alfvén Eigenmodes and 

is solved by appropriate linear codes, e.g. CASTOR, 

MISHKA, PHOENIX, or LIGKA 
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Wave Evolution 

• Linear eigenmode structure is assumed to remain fixed 

throughout simulations 

• Each wave is allowed two degrees of freedom, 
amplitude and phase-shift; Ak and k 

 

 

• The wave Lagrangian can then be written as 

 

 

where 

 

 

 

and nw is the number of eigenmodes in the system 
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Additional mode 

damping rate, d 

Wave Equations 

• Linear eigenstructure assumed invariant 

• Introduce slowly varying amplitude and phase: 

 

• Gives wave equations as: 

 

 

 

• where 
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Distribution Function 

• Represented by a finite number of markers 

• Markers represent deviation from initial 
distribution function - so-called f method 

– Dramatically reduces numerical noise 
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Marker Loading 

• Number of particles represented by a marker: 

 
• Physical volume element associated with a marker: 
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Quiet Start Method 

• Markers are uniformly loaded using Hammersley’s sequence: 

 

• If integer i is written in base r: 
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Example of Linear Growth and Saturation of a TAE 

• Equilibrium: 

– a/R0 = 0.3 

– q0 = 1.1 

– E0 = 3.5 MeV 

n=3 TAE 

f 

f 

Energy [MeV] 

s 

q p 

s s 

Slowing down 

distribution 

Radially 

peaked fast 

ion profile 
(m,n) = (3, 3) 

(m,n) = (4, 3) 

S. D. Pinches et al., Comput. Phys. Commun. 111 (1998) 
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Linear Growthrate 

• f = 3×10-4 

np = 52,500 

Mode 

saturates at 

B/B~10-3
 

d/0=2.7% 
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Fast Ion Redistribution due to TAE 
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Multiple KTAE in JET 

• Multiple KTAE (n = 5 – 9) in 

JET interacting through the 

driving alpha particle 

distribution 
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INCLUDING DISSIPATION 
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Nonlinear Theory and Dissipative Effects 

• When modes are near marginal stability then there are 

various competing effects 

– Drive from fast ions, γL 

– Damping from background plasma, γD 

– Reconstitution of profiles, νeff 

|γL – γD| ~ νeff << γL, γD 
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Nonlinear Theory 

• Nonlinear cubic equation 

describes Alfvén 

eigenmodes near 

threshold 

–  is the collision frequency 

for fast particles 

H.L. Berk, B. N. Breizman & M. Pekker. Phys. Rev. Lett. 76 (1996) 
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Closer look at TAE… 

• Resonant particles relax through collisions 

• Single mode undergoes pitchfork splitting 
– Used to determine  and  

A. Fasoli et al. Phys. Rev. Lett. 81 (1998) Theory Experiment 
Time [s] 
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q
u
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 [
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/ = 0.059 

/ = 0.052 

/ = 0.047 
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Frequency Sweeping 

• Occurs when mode is close 

to marginality 

– Damping balancing drive 

• Structures form in fast 

particle distribution function 

– Holes and clumps 

• These support long-lived 

nonlinear BGK waves 

• Background dissipation is 

balanced by frequency 

sweeping 
[H.L. Berk, B.N. Breizman & N.V. Petviashvili, Phys. Lett. A 234 213 (1997), Errata Phys. Lett. A 238 408 (1998)] 
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Experimental Observations 

• Frequency sweeping in MAST #5568 

Simultaneous 
upwards and 
downwards 
frequency 
sweeping, 

/0~ 20% 

H.L. Berk, B.N. Breizman & N.V. Petviashvili. Phys. Lett. A 234 (1997), Phys. Lett. A 238 (1998) 



Page 44 IDM UID: PVLZH2 © 2014, ITER Organization 

7th ITER International School, High Performance Computing in Fusion Science, 25th August 2014 

JET Observations 

Frequency 

sweep 
/0~ 5% 

• Shear optimised 

D-T pulse 

• TAE modes 

during current 

ramp phase 
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Using Theory for Diagnostic Purposes 

• Trapping frequency is related to TAE amplitude 

 
 

• Frequency sweep is related to trapping frequency 

 
 

• Amplitude related to frequency sweep 

[S D Pinches et al., Plasma Phys. Control. Fusion 46 S47-S57 (2004)] 

[Berk, Breizman & Petviashvili, Phys. Lett. A 234 213 (1997)] 

Analytic estimates 

give correct order of 

magnitude.  

Numerical simulation 

required for more 

accurate estimate. 
[H.L. Berk, B. N. Breizman & M. Pekker. Phys. Rev. Lett. 76 (1996)] 
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Validation of Nonlinear Modelling 

• Use experimentally observed rate of frequency 

sweeping to determine wave amplitude and 

compare with independent measurements 

– In general, numerical modelling is needed to establish the 

form factor that relates  and B 

– Verify HAGIS for model case 

– Employ HAGIS to establish B in general case 

• General geometry (including tight-aspect ratio) 

• Mode structure: global mode analysis 
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Recall n = 3 TAE example 

• d/0 = 0, f = 3×10-4 

np = 52,500 

Mode 

saturates at 

B/B~10-3
 

d/0=2.7% 
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…with additional damping 

• d/0 = 2%, f = 3×10-4 
Mode saturates 

at much lower 

level, B/B~10-4 

np = 210,000 
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Frequency Sweeping 

• Fourier spectrum of evolving mode 

0 

Frequency sweep 
/0~ 10% 
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MAST #5568 

• Obtain factor relating b and B 

Global 

n=1 TAE 

Monotonic 

q-profile 

Eb = 40 keV 

a/R0 = 0.7 

B0 = 0.5 T 

R0 = 0.77 m 
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Particle Trapping in MAST 

• Particles trapped 

in TAE wave 

– All particles have 

same 

H’ = E - /n P 

    = 20 keV 

– TAE amplitude: 
B/B = 10-3 
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Scaling of Nonlinear Bounce Frequency 

• Monotonic q 

profile 

• H’ = 20 keV 

MAST #5568 
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HAGIS 1 

Linear (HAGIS 1) 

b = 1.156 × 106 (B/B) 
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TAE Amplitude in MAST 
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df = 18 kHz 

dt = 0.8 ms 
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Consider again our n = 3 TAE case 

f 

f 

Energy [MeV] 

s 

Slowing down 

distribution 

Radially 

peaked fast 

ion profile 
q p 

s s 

n = 3 TAE 

 (%) 

/


 

• Equilibrium: 

– a/R0 = 0.3 

– q0 = 1.1 

– E0 = 3.5 MeV 

– βf = 310-4 

Growthrate has a 
maximum (~6%) at ~70% 

of original frequency 
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Effect of damping 

• np = 262,500, d/0 = 6% 

Long term symmetric frequency sweeping, δω ~ t1/2  
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HAGIS Code: Fast Particle Drag 

• Introducing drag into the kinetic equation: 

 

 
 

 

• Manifests itself through a change in the 

characteristics of the kinetic equation (marker 

trajectories)  

Model allows both 
v dependent and 

constant drag 

+   S 

Fast ion 
source 
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HAGIS Code: Fast Particle Drag 

• Including drag necessitates the inclusion of a fast ion source 

to maintain initial steady-state conditions 

f 

v 

S 

f0 

Slowing down due to drag 

δf 

f0: Analytic function 

or numerical 

representation 

Marker source is handled by 

loading markers to high v 

Markers follow guiding centre 

trajectories and slow down.  They may 

be removed from simulation at low v 

δf: Represented by 

ensemble of markers 

v 

Slowing down due to drag 

High energy 

source of ions: 

fusion alphas or 

beam ions 
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v 

Slowing down due to drag 
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Perturbation to distribution moves through 

phase space affecting gradients and stability 
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Super-Alfvénic ion source and effect of drag 

v 

f 
NBI blip or alpha 

source for Δt 

vcrit 

v 

f 

vres 

drag 

Bump-on-tail distribution 

vb 

Slowing 

down on 
ions 

Slowing down on electrons 

vA 
Wave flattens 

distribution and 

removes drive 

Drag moves flat 

spot leading to 

increased drive 

and explosive 

growth! 
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Effect of (Krook) relaxation 

• If eff is ~1% of L then frequency sweeping structures 

are destroyed after ~100 Lt 

 

 

 

 

 

 

 

• Increasing Krook relaxation to 10% almost completely 

eradicates any mode sweeping 
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Nonlinear Behaviour: Drag + Krook 

• np = 262,500, L/0 = 6.12%, d/0 = 6%, ei/0 = 0.3%, eff/0 = 1% 

• Asymmetric, repetitive, frequency sweeps: δ/0 ~ ± 30% 

Frequency sweeping 
TAE in MAST #22807 

HAGIS 

MAST 
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Fast Ion Redistribution: Drag + Krook 

• Changes to fast ion distribution due to nonlinear 

self-consistent wave-particle interaction: 

– Extensive and sustained redistribution 

• np = 262,500, L/0 = 6.12%, d/0 = 6%, ei/0 = 0.3%, eff/0 = 1% 
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FISHBONES 
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Fast Particle Losses in JET 

• NBI heating 

– vb ~ vA 

• 10% drop in neutron 

yield due to ‘fishbones’ 

D.N. Borba et al., Nucl. Fusion 40 (2000) 
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Fishbone Instability 

• Frequency sweeping mode driven by fast particles 

• Consistent MHD/kinetic description being developed 

Time [s] 
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re
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A. Ödblom et al., Phys. Plasmas 9 (2002) 155 
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Modelling Fishbones in ASDEX Upgrade 

• m=1,n=1 internal kink 

 

• Linear frequency chirps 

(27.520 kHz) 

 

• Repetition rate: 1ms 

 

• Slowing down 

distribution of 60 keV 

NBI ions 

 

• <fast> = 0.36% 
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Fishbone Evolution 
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Fishbone Simulation 
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Current Carrying Ion 

• Trapped ion at q = 1 

surface 

 

• Energy, E = 55 keV 

 

• Precession frequency, 

 = 7 kHz 

 

• Bounce frequency, 

b = 41 kHz 
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Spatial redistribution due to fishbones 

• Fast ions radially expelled towards low field side 
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Pitch Angle Redistribution 

• Change in trapped/passing fast ion distribution 
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Fast Ion Radial Current 

• f simulation with HAGIS code gives <J

(t)> and variation 

of fast ion distribution function 
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FAST ION LOSSES DUE TO 

TORNADO MODES IN JET 
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Tornado modes in JET 

• Every “monster” sawtooth crash preceded by tornado modes 

t = 11.2 - 11.7 [s] t = 12.8 - 13.6 [s] t = 14.9 - 15.7 [s] t = 16.9 - 17.4 [s] 
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3.1-MeV -ray emission from 12C(d,p)13C; 
Deuterons with E>500 keV 

Loss measurements increase during tornado mode activity  

V Kiptily 

Scintillator probe 

Observations of Fast Ion Losses in JET 

Sawtooth crashes Sawtooth crashes 
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TAE Mode Structure 

• Linear MHD 

eigenfunctions 

calculated with 

CASTOR code 

– Equilibrium from 

HELENA code 

n = 3 n = 4 n = 5 

n = 6 n = 7 
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Fast Ion Properties 

• Determine natural particle frequencies, ωφ and ωθ 
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Resonant ICRH ions 
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Resonance condition: 

• Ωnp = n ωφ – p ωθ – ω = 0 

n = 3 tornado mode: 

• p = -1 → 2 

• f = 283 kHz 
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Resonance Overlap 

• Overlap between resonances explains observed loss 

Prompt losses 

Additional 

losses due to 

tornado modes 

Particles move 

along lines given 

by 

E – (ω/n)Pφ = K 

n = 5,7 
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Summary 

• Physics of fast ion driven instabilities well understood 

• Fast particles drive instabilities and are in turn re-distributed 

and, in some cases, lost 
– Consistent nonlinear story emerging 

• Nonlinear modelling of fast ion driven instabilities 
– Multiple modes interacting through driving fast ion distribution 

– Determination of amplitude of frequency sweeping modes in MAST 

– Radial fast ion current due to fishbones in ASDEX Upgrade 

– Fast ion losses due to tornado modes in JET 

• Models start to successfully describe rich nonlinear 

phenomena near marginal stability 
– Mode saturation, pitchfork splitting and frequency sweeping 

• Fast particle driven modes remain a valuable diagnostic tool 
– MHD spectroscopy (qmin(t) from Alfvén cascades) 

 

 


